1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
//! Interfaces for encrypting data
//!
//! # Examples
//! ## Simple
//! ```rust
//! use ubiq::credentials::Credentials;
//! use ubiq::encryption::encrypt;
//! use ubiq::decryption::decrypt;
//!
//! let creds = Credentials::new(None, None).unwrap();
//!
//! let ct = encrypt(&creds, b"abc").unwrap();
//! let pt = decrypt(&creds, &ct).unwrap();
//!
//! assert!(pt != ct);
//! assert!(pt == b"abc");
//! ```
//! ## Piecewise
//! ```rust
//! use ubiq::credentials::Credentials;
//! use ubiq::encryption::Encryption;
//! use ubiq::decryption::decrypt;
//!
//! let creds = Credentials::new(None, None).unwrap();
//! let pt = b"abcdefghijklmnopqrstuvwxyz";
//!
//! // note that we pass `1` to the new() function, indicating
//! // that the encryption key will be used once
//! let mut enc = Encryption::new(&creds, 1).unwrap();
//!
//! /*
//! * pt can be passed to the encryption process in
//! * as many or as few pieces as desired
//! */
//!
//! let mut ct = enc.begin().unwrap();
//! ct.extend(enc.update(&pt[0..4]).unwrap());
//! ct.extend(enc.update(&pt[4..11]).unwrap());
//! ct.extend(enc.update(&pt[11..]).unwrap());
//! ct.extend(enc.end().unwrap());
//!
//! let rec = decrypt(&creds, &ct).unwrap();
//!
//! assert!(pt != &ct[..]);
//! assert!(pt == &rec[..]);
//!
//! /*
//! * if the encryption object was created for more than
//! * a single use (by passing a number larger than 1 to
//! * the new() function), then the enc object could now
//! * be reused by following the begin(), update()...,
//! * end() process shown above for as many times as
//! * specified by the call to new()
//! */
//! ```
use crate::algorithm;
use crate::cipher;
use crate::client::Client;
use crate::credentials::Credentials;
use crate::error::Error;
use crate::header::Header;
use crate::result::Result;
use crate::session;
use rand::RngCore;
const ENCRYPTION_KEY_PATH: &str = "api/v0/encryption/key";
#[derive(serde::Deserialize)]
struct NewEncryptionResponseSecurityModel {
algorithm: String,
// enable_data_fragmentation: bool,
}
#[derive(serde::Deserialize)]
struct NewEncryptionResponse {
encrypted_private_key: String,
encryption_session: String,
key_fingerprint: String,
wrapped_data_key: String,
encrypted_data_key: String,
max_uses: usize,
security_model: NewEncryptionResponseSecurityModel,
}
#[derive(Debug)]
/// Structure encompassing parameters used for encrypting data
///
/// Using this structure, a caller is able to encrypt a plaintext
/// by feeding it to the member functions in a piecewise fashion
/// (or by doing so all at once). The encryption object can be reused
/// to encrypt as many plaintexts as were initially specified by the
/// call to `new()`
pub struct Encryption<'a> {
session: session::Session<'a>,
}
impl Encryption<'_> {
fn s_close(
client: &Client,
host: &String,
id: &Option<String>,
fp: &String,
uses: &session::SessionKeyUses,
) -> Result<()> {
if uses.cur < uses.max {
let rsp = client.patch(
&format!(
"{}/{}/{}/{}",
host,
ENCRYPTION_KEY_PATH,
fp,
id.as_ref().unwrap(),
),
"application/json".to_string(),
format!(
"{{\
\"requested\": {},\
\"actual\": {}\
}}",
uses.max, uses.cur,
),
)?;
if !rsp.status().is_success() {
return Err(Error::new(&format!(
"failed to update encryption key: {}",
rsp.status().as_str()
)));
}
}
Ok(())
}
pub fn new<'a>(creds: &Credentials, uses: usize) -> Result<Encryption<'a>> {
let client = std::rc::Rc::new(Client::new(creds));
let host = std::rc::Rc::new(creds.host().clone());
let rsp = client.post(
&format!("{}/{}", host, ENCRYPTION_KEY_PATH),
"application/json".to_string(),
format!(
"{{\
\"uses\": {}\
}}",
uses
),
)?;
match rsp.json::<NewEncryptionResponse>() {
Err(e) => return Err(Error::new(&e.to_string())),
Ok(msg) => Ok(Encryption {
session: session::Session::new(
std::rc::Rc::clone(&client),
std::rc::Rc::clone(&host),
Some(msg.encryption_session),
&msg.key_fingerprint,
algorithm::get_by_name(&msg.security_model.algorithm)?,
&msg.encrypted_private_key,
&msg.wrapped_data_key,
&msg.encrypted_data_key,
msg.max_uses,
creds.srsa(),
Self::s_close,
)?,
}),
}
}
/// Begin a new encryption "session"
///
/// Encryption of a plaintext consists of a `begin()`, some number
/// of `update()` calls, and an `end()`. It is an error to call
/// `begin()` more than once without an intervening `end()`.
pub fn begin(&mut self) -> Result<Vec<u8>> {
if self.session.ctx.is_some() {
return Err(Error::new("encryption already in progress"));
} else if self.session.key.uses.cur >= self.session.key.uses.max {
return Err(Error::new("encryption key has expired"));
}
let mut iv = Vec::<u8>::new();
iv.resize(self.session.algo.len.iv, 0);
rand::thread_rng().fill_bytes(&mut iv);
let hdr = Header::new(
if self.session.algo.len.tag > 0 {
crate::header::V0_FLAG_AAD
} else {
0
},
self.session.algo.id,
&iv,
&self.session.key.enc,
);
let ct = hdr.serialize();
self.session.ctx = Some(cipher::CipherCtx::new(
cipher::CipherOp::Encrypt,
self.session.algo.name,
&self.session.key.raw,
&iv,
if (hdr.flags & crate::header::V0_FLAG_AAD) != 0 {
Some(&ct)
} else {
None
},
)?);
self.session.key.uses.cur += 1;
Ok(ct)
}
/// Input (some) plaintext for encryption
///
/// The update function writes data into the Encryption object.
/// Ciphertext data may or may not be returned with each call to
/// this function.
pub fn update(&mut self, pt: &[u8]) -> Result<Vec<u8>> {
if self.session.ctx.is_none() {
return Err(Error::new("encryption not yet started"));
}
self.session.ctx.as_mut().unwrap().update(pt)
}
/// End an encryption "session"
///
/// After all plaintext has been written to the object via the
/// `update()` function, the caller must call this function to finalize
/// the encryption. Any remaining plaintext will be returned along
/// with any authentication information produced by the algorithm.
pub fn end(&mut self) -> Result<Vec<u8>> {
if self.session.ctx.is_none() {
return Err(Error::new("encryption not yet started"));
}
let res = self.session.ctx.as_mut().unwrap().finalize(None);
self.session.ctx = None;
return res;
}
/// Encrypt a single plaintext in one shot
///
/// This function is equivalent to calling `begin()`, `update(pt)`,
/// and `end()`
pub fn cipher(&mut self, pt: &[u8]) -> Result<Vec<u8>> {
let mut ct = self.begin()?;
ct.extend(self.update(pt)?);
ct.extend(self.end()?);
Ok(ct)
}
}
/// Encrypt a single plaintext with a unique key
///
/// This function is equivalent to creating a new Encryption object
/// for a single use and calling `begin()`, `update(pt)`, and `end()`.
pub fn encrypt(c: &Credentials, pt: &[u8]) -> Result<Vec<u8>> {
Encryption::new(&c, 1)?.cipher(&pt)
}
#[cfg(test)]
mod tests {}