1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
//! The FF3-1 algorithm
//!
//! The FF3-1 algorithm supports key sizes of 128, 192, and 256 bits.
//! The length of the tweak is specified by the algorithm as 56 bits.
//!
//! This implementation contains a "context" structure, called FF3_1,
//! that holds the encryption key, the default tweak, and some other
//! parameters related to the algorithm. Once, this structure has
//! been created, it can be used to encrypt and decrypt data
//!
//! # Example
//! ```rust
//! let ff3_1 = fpe::ff3_1::FF3_1::new(
//! &[
//! 0xad, 0x41, 0xec, 0x5d, 0x23, 0x56, 0xde, 0xae,
//! 0x53, 0xae, 0x76, 0xf5, 0x0b, 0x4b, 0xa6, 0xd2,
//! ], // the encryption key
//! // the default tweak
//! Some(&[0xcf, 0x29, 0xda, 0x1e, 0x18, 0xd9, 0x70]),
//! 10, // radix specifies the number of characters in the alphabet
//! None // use (the first 10 characters of) the default alphabet
//! ).unwrap();
//!
//! let pt = "6520935496";
//! let ct = "4716569208";
//!
//! let out = ff3_1.encrypt(pt, None).unwrap();
//! assert!(out == ct);
//!
//! let out = ff3_1.decrypt(&ct, None).unwrap();
//! assert!(out == pt);
use crate::ffx;
use crate::result::Result;
use num_traits::Euclid;
/// The FF3_1 context structure
pub struct FF3_1 {
ffx: ffx::FFX,
}
impl FF3_1 {
/// Create a new FF3-1 context
///
/// The supplied key may be any of the lengths supported by AES.
///
/// The default tweak is optional. If supplied, it's length
/// must be 7 bytes as per the algorithm specification. Those values
/// are hardcoded within this function. Note that if the default
/// tweak is not supplied, one must be supplied during the encrypt
/// and decrypt operations
///
/// The radix must be less than or equal to the number of characters
/// in the supplied alphabet (or the default alphabet) if no alphabet
/// is supplied to this function
pub fn new(
key: &[u8],
opt_twk: Option<&[u8]>,
radix: usize,
opt_alpha: Option<&str>,
) -> Result<Self> {
// key is reversed for ff3-1
let mut k = key.to_vec();
k.reverse();
Ok(FF3_1 {
ffx: ffx::FFX::new(
&k,
opt_twk,
// maxlen for ff3-1:
// = 2 * log_radix(2**96)
// = 2 * log2(2**96) / log2(radix)
// = 2 * 96 / log2(radix)
// = 192 / log2(radix)
(192f64 / (radix as f64).log2()).floor() as usize,
// tweak size is fixed for ff3-1
7,
7,
radix,
opt_alpha,
)?,
})
}
// the code wants to work with individual characters or letters.
// this isn't possible with utf8, so the caller is expected to
// convert Strings to sequences of chars
fn cipher_chars(
&self,
inp: &[char],
opt_twk: Option<&[u8]>,
which: ffx::CipherType,
) -> Result<Vec<char>> {
let ffx = &self.ffx;
let radix = ffx.get_radix();
let n = inp.len();
ffx.validate_text_length(n)?;
// (step 1)
let v = n / 2;
let u = n - v;
// (step 2)
let mut a = inp[..u].to_vec();
let mut b = inp[u..].to_vec();
let t = ffx.get_tweak(&opt_twk);
ffx.validate_tweak_length(t.len())?;
// (step 3)
// tl and tr are tw[0] and tw[1]
let mut tw: [[u8; 4]; 2] = [[0; 4]; 2];
tw[0][..3].copy_from_slice(&t[..3]);
tw[0][3] = t[3] & 0xf0;
tw[1][..3].copy_from_slice(&t[4..]);
tw[1][3] = (t[3] & 0x0f) << 4;
// later on radix**m where m is either u or v is needed.
// just calculate them both here. note that u either equals
// v or is one more than v. (step 4v, partial)
let mut mv: num_bigint::BigInt = radix.into();
mv = mv.pow(v as u32);
let mut mu = mv.clone();
if v != u {
mu *= radix;
}
// the algorithm calls for the strings A and B to be reversed
// at various points for certain operations, and it otherwise
// maintains them in the original form. however, if they are
// reversed before the algorithm starts, there is no need to
// reverse them *during* the algorithm. furthermore, because
// this implementation elides step 6vi, there is no need for
// reversal at all during the algorithm.
a.reverse();
b.reverse();
// without the need for reversal, the strings can be converted
// to their numerical representations for the duration of the
// algorithm
let mut na = ffx.chars_to_bignum(&a)?;
let mut nb = ffx.chars_to_bignum(&b)?;
// during decryption, the algorithm runs in "reverse".
// swap these values so that during decryption we start
// with the last ones used during the encryption
if let ffx::CipherType::Decrypt = which {
std::mem::swap(&mut na, &mut nb);
std::mem::swap(&mut mu, &mut mv);
let (t0, t1) = tw.split_at_mut(1);
std::mem::swap(&mut t0[0], &mut t1[0]);
}
for i in 0..8 {
let mut p: [[u8; 16]; 2] = [[0; 16]; 2];
// (step 4i, 4ii)
p[0][..4].copy_from_slice(&tw[((i + 1) as u8 % 2) as usize]);
match which {
ffx::CipherType::Encrypt => p[0][3] ^= i,
ffx::CipherType::Decrypt => p[0][3] ^= 7 - i,
}
// the num_bigint library doesn't provide left padding,
// but it does support little endian output which allows
// us to do right-padding and then reverse the bytes
let (_, mut v) = nb.to_bytes_le();
v.resize(12, 0);
v.reverse();
p[0][4..16].copy_from_slice(&v);
// the ciph() operation does not support encryption in
// place, so the output is stored in a separate array,
// which is only used once, immediately after the operation
// (step 4iii)
p[0].reverse();
{
let (p0, p1) = p.split_at_mut(1);
ffx.ciph(&p0[0], &mut p1[0])?;
}
p[1].reverse();
// (step 4iv)
let y = num_bigint::BigInt::from_bytes_be(
num_bigint::Sign::Plus,
&p[1],
);
// (step 4v)
match which {
ffx::CipherType::Encrypt => na += y,
ffx::CipherType::Decrypt => na -= y,
}
na = na.rem_euclid(&mu);
// (step 4i, partial)
std::mem::swap(&mut mu, &mut mv);
// (step 4vii, 4viii; step 4vi is skipped)
std::mem::swap(&mut na, &mut nb);
}
// during decryption, the halves are reversed. put em back
if let ffx::CipherType::Decrypt = which {
std::mem::swap(&mut na, &mut nb);
}
// convert A and B back from their numerical representations
b = ffx.bignum_to_chars(&nb, Some(v))?;
a = ffx.bignum_to_chars(&na, Some(u))?;
// restore the ordering of the strings
b.reverse();
a.reverse();
// (step 5)
Ok([a, b].concat())
}
// common function to convert the input String to a sequence
// of chars before the cipher operation and back again after
fn cipher_string(
&self,
inp_s: &str,
opt_t: Option<&[u8]>,
which: ffx::CipherType,
) -> Result<String> {
let mut inp_c = Vec::<char>::new();
inp_s.chars().for_each(|c| inp_c.push(c));
let out_c = self.cipher_chars(&inp_c, opt_t, which)?;
Ok(String::from_iter(out_c))
}
/// Encrypt a string
///
/// If the tweak is not None, then the specified tweak will be used
/// instead of the default specified by the context structure.
pub fn encrypt(&self, pt: &str, twk: Option<&[u8]>) -> Result<String> {
self.cipher_string(pt, twk, ffx::CipherType::Encrypt)
}
/// Decrypt a string
///
/// If the tweak is not None, then the specified tweak will be used
/// instead of the default specified by the context structure. The
/// tweak used must match that used during encryption.
pub fn decrypt(&self, ct: &str, twk: Option<&[u8]>) -> Result<String> {
self.cipher_string(ct, twk, ffx::CipherType::Decrypt)
}
}
fn cipher(
key: &[u8],
twk: Option<&[u8]>,
txt: &str,
radix: usize,
alpha: Option<&str>,
op: fn(&FF3_1, &str, Option<&[u8]>) -> Result<String>,
) -> Result<String> {
let ff3_1 = FF3_1::new(key, None, radix, alpha)?;
return op(&ff3_1, txt, twk);
}
pub fn encrypt(
key: &[u8],
twk: Option<&[u8]>,
pt: &str,
radix: usize,
alpha: Option<&str>,
) -> Result<String> {
return cipher(key, twk, pt, radix, alpha, FF3_1::encrypt);
}
pub fn decrypt(
key: &[u8],
twk: Option<&[u8]>,
ct: &str,
radix: usize,
alpha: Option<&str>,
) -> Result<String> {
return cipher(key, twk, ct, radix, alpha, FF3_1::decrypt);
}
#[cfg(test)]
mod tests {}